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RELAXATION OF TURBULENT STRESS 

V. A. Bubnov UDC 532.517.4 

Equations for the pulsational components of the velocity and temperature yield 
relaxational formulas for the turbulent stress and the heat flux. 

i. Relaxation of Turbulent Stress 

Attention was first drawn to the analogy between a turbulent flow of Newtonian fluid 
and a laminar flow of non-Newtonian fluid in [I]. There have been a number of works in 
which turbulence phenomena are identified with viscoelasticity phenomena [2-4]. In [5], 
attention turned to the possibility of making use of the pulsational components of the velo- 
city to close the equations for the mean velocities. 

From these equations, by well-known means, it is possible to write relaxational formulas 
for the turbulent stress. To this end, consider the general equations of motion of an incom- 
pressible liquid in the absence of external bulk forces 

pOu.._~ _ 0 (Ph~ + puiuk), (1) 
at axk 

auk = 0 ,  i =  1, 2, 3, k =  1, 2, 3. (2) 
axk 

A c c o r d i n g  to  R e y n o l d s '  c o n c e p t s ,  t he  hydrodynamic  q u a n t i t i e s  a r e  s e p a r a t e d  i n t o  mean 
and p u l s a t i o n a l  components  

u, = + . ; ,  . h  = + pk, = + ( 3 )  

Now t h e  f o l l o w i n g  e q u a t i o n s  f o r  t he  mean and p u l s a t i o n a l  v e l o c i t i e s  may be d e r i v e d  f rom Eq. 
(1) [6] 
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9au~ _ a (pa~ + 9u-~u~ + 9u; u~), (4) 
at Ox~ 

Ot ax~ 

at ax~ 

From Eqs. (5) 
tensor ui'uj', bearing in mind the obvious formula 

at --OF - +  at 
Mult iplying Eq. (5) by u j '  and Eq. (6) by u i '  and adding them y ie lds  the r e s u l t  

at ~ [P~ + p u g  + p (u; ~'~ - u; ~'~)l - ~; a - , , 
The convective-product operator has been introduced here 

dt -- a ~  + uh Ox~ 
All the terms in Eq. (7) are now averaged, using the Reynolds equations 

and adopting the hypothesis that 

ax~ - o ;  u;u;~ • - ~  

(6) 

and (6), an expression is obtained for the components of the turbulent-stress 

(7) 

(8) 

(9) 

Then Eq. (7) takes the form 

pdu~ u} l " ~  a ' u~)]} 
~t -- - I~} (p~, + p~; ubl + -37f-x~ I< (p~j + p~j 

au~ au; [ au-, aYj ] 
(io) 

Integration over an arbitrary volume V is now performed in Eq. (i0), and in the first 
two terms on the right of the resulting expression the Ostrogradskii--Gauss theorem is used 
in the following form 

.~ t axh ax~ 
v s 
Here nk are the directional cosines of the normal to the surface S. The surface integral 
expresses the energy transfer with respect to motion through the surface S and, according 
to the discussion of Reynolds [6], is equal to zero. 
Eq. (lO) 

dt + P;' . v  - 
v v 

Then, the following relation replaces 

ax~ + u;, u" k axh ) dV. 
v 

But since the elementary volume V is arbitrary, this equation may be rewritten in the form 

at = P':' ~ + P~J ax-----S. - v ~ ax~ + u/u" h ax~ ] " (11) 

Let i=j; then Eq. (11) gives 

- a~;  aY~ dE'  : p~. ~u[ u'~ , ( 1 2 )  
dt Oxh Oxh 
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where E'=1/2 ui '~ is the kinetic energy of motion along the trajectory of mean motion [6]. 
Reynolds calls this the "resolving" equation, and has attempted to calculate the critical 
number Re from it. 

For the mean values, by analogy with the usual representation, the following formulas 
are introduced 

I o~i o ~  ~ . 

Pu= { Ou~ ] . . ( 1 3 )  

Using Eq. (13), 
relaxation time 

the mean-deformation-rate tensor can be expressed in terms of the Maxwellian 

o~ . 0% _ E J _ 1 i # i ,  
Oxj - -  Ox~ ~h~ x~ ' 

2 Oui PU-- P 1 
Oxi -- ~u ~u 

(14) 

Introducing the usual formulas for the turbulent stress 

~. = - pu,: u}, 

Eq. (ii) can be rewritten in the form 

dl = ojk -~k + aik OX k - -  P~i 
o.) o.7 
Oxh + Plis Oxh (15) 

The well-known formulas for deformational motion are used 

, 1(0  
o x ~ -  2 \ Ox~ + Ox~ ] + - y  ~ ~ ' 

(16) 

Ox~ ='-2-  \ Oxh Oxj ] + T Oxk Oxj " 

Taking these  formulas i n to  account ,  Eq. (15) may be d iv ided  in to  two: 

( + ) +__9_. ( + (17) 
dt 2 - - \  Oxh Ox~ } ~ ~ Oxj 7 

Ps ~ + Pli (18) Ox~ Oxh - 2 Oxk Oxi - - - ~ -  ~ -EE; " 
Equation (18) expresses the dissipation of relative motion through vorticity of the mean 
motion. 

If the mean velocities are eliminated in Eq. (17), in accordance with Eq. (14), the 
result is 

dou 1 ( 1 1 ) au+.aj t  ai~ , oj~ 
clt +-2-- - ~ u  +--~JJ .u + 2"~u + 2--~ik + 2--~ =0' (19) 

i, 1 =  1, 2 ,  3; k=#i,  k~/=], 
3 dau 

dt + X  oth __=0. (20) 
1~-1 "gtk 

The expressions obtained are relaxational formulas for the turbulent stress. 

For the purposes of subsequent discussion, Eq. (4) is rewritten in the form 

~ 0 
P dt Oxh ~h~__a~i)" (21) 

The turbulent stress is eliminated by a means used in deriving heat-conduction equations of 
hyperbolic type [7]. Both sides of Eq. (21) are differentiated with respect to time and the 
resulting relation is premultiplied by Tii, to give 
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�9 iio dt  ~ - ~ .  ~ ( p ~ - - o ~ i )  �9 

A d d i n g  Eqs .  (21)  and  (22)  l e a d s  to  t h e  r e l a t i o n  

d~i ~ i  O[(~h~__ak~)%--C~i d ] 
"cup ~ + 9 et Ox~ ~ ( ~  - ~ )  " 

To c l o s e  t h i s  e q u a t i o n ,  t h e  f o l l o w i n g  h y p o t h e s i s  i s  i n t r o d u c e d  

d --~ki \ Oxi + Oxk 7 '  

dt  p - -  2 ~ii k OXi ] ' 

This is analogous to the Maxwellian hypothesis for viscoelastic stress. Now Eq. (23) is 
rewritten in the form: 

"Clip dt 2 9 d ~ -  Oxi ~ 4- ~ i  , 

i, k = 1, 2, 3; ~ki = ~ih. 

If the velocities of mean motion are found from Eq. (25), then ~ij and Pki may be found 
from Eqs. (19), (20), and (24). 

The formula for the second convective product takes the form 

d 2 02 02 dtlk 0 02 - - 02 - - 02 - - 0 z 
- -  2 

dt 2 Ot z + uh Ox~ -~ dt Oxh t- 2 ul~ - -  + 2 ulu,, - -  -p 2 UlUs - -  +- 2 u.,uz OtOx Ox~Ox~ Ox~Ox3 Ox~Ox~ 

In the simplest case, when zij =~, ~ki=~, Eq. (25) takes the Simpler form 

"~ d2~i du~ _ 1 O~ - 
dt z @ d ~  P Ox~ ~- vV2uz " 

(22)  

(23) 

(24) 

(25) 

- - . ( 2 6 )  

(27) 

2. Relaxation of Heat Flux 

Consider the heat-balance equation in a turbulent flow of incompressible liquid, dis- 
regarding energy dissipation 

dT Oqk 
- -  ( 2 8 )  Co dt Oxh 

Here Co is the product of the specific heat and the density. Separating the quantities 
appearing in Eq. (28) into mean and pulsational components 

T=T-]-T ' ,  Uh=~h-~Us q~=$h+q~ (29) 

and performing the usual averaging operation for all the terms in Eq. (28) leads to the 

(qh + CoU~T')" (30) 

tq~ + Co.~f+ Co ( . y -  "T' u~ )]. 

result 

dT 0 
Co dt -- Oxh 

S u b t r a c t i n g  Eq. (30)  f rom Eq. (28)  g i v e s  

dT' 0 
CO - - - -  

dt Oxh 
(31) 

By the above-outlined means, the following equation may be obtained from Eqs. (31) and (5): 

O T ' [ I _ _ _ ~  Ou/ ( Oui oT- )  du'T' 1 P~i - -  q~ - -  ~ + u; u" k �9 (32)  
d ~ -  p Ox~ Co Oxh Oxh 

It has been assumed that 

0.~r' o.; 
u; Ox-------~ = 0 ,  u~T" ax h --0. 

If Eq. (16) is used, Eq. (32) may be replaced by two relations: 
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e.;r' 4r' ( 
dt ~- ----if-- ~, Oxh + Ox~ / = O, 

(33) 

1 q~ Ou; 1 OT' --u;u~ O f  us ( ~, Ou~) 
c-T- + - 7  Ox---[ + - g -  �9 

(34) 

In (33), the mean values may be expressed in terms of the relaxation-time spectrum in Eq. 
(14) , when 

du;T '  us = O. 
dt 2~ih 

After differentiation with respect to the time, Eq. (30) is rewritten in the form 

"q~Co dt a = - -  ~ii axk 

The resulting relation is combined with Eq. (30) 

day dT" O 
"q~Co y -k co dt -- Oxh 

and the  fo l lowing  hypo thes i s  i s  adopted 

d 
(qh -t- CoU~,T') + ~u -~ 

The result obtained is 

[ ] (qk -}- cou~,T') -]- ~, - - - -  (qh -l- Cou~T') 
. dt 

of 
- -  ('qh -1- CoU~T')  = - -  ;~k Oxh 

daT dT O~'T 
~n dt a t- dt ki Ox~ 

If Eq. (37) is solved, then qk and ui'T, may be determined from Eqs. (35) and (36). 

(35) 

(36) 

(37) 

3. Problem of Accelerating Flow Close to a Plane Wall 

Suppose that a plane wall, previously at_rest, suddenly_begins_to move in its own plane 
at a constant velocity Uo. For such a flow, u1=u1(x~, t), u2=0, u3=0, and the pressure 
remains constant [8]. With these assumptions, Eq. (27) is simplified: 

OzU a u  a2u --J-~:~; __ (38) 
ata Ot oy a 

Here U(t ,  y ) = u l ( x 2 ,  t ) .  The i n i t i a l  c o n d i t i o n s  are  

when t ~ O  U----O foraD, y, 
(39) 

when t > O  U = U o  for y = O ,  U----O, 9----0o. 

Let ~=p~2 -- ~2 denote the difference between the mean and turbulent stresses. Then 
Eq. (24) may be rewritten for this problem in the form: 

O~ au 
~+~ --:--~ (40) 

at Oy 

It is now expedient to convert to dimensionless values by means of the formulas 

t = C ,  v = V ~ y, u - -  u ~ ,  ,~ = ~,~& 
It may readily be established that Eqs. (38) and (39) are equivalent to the system of equa- 
tions 

__OU _ [ 0~_~_ "~ , OU _ c)(y 
ay k - - a T - - ]  at ON (41) 

in which, for convenience, the bars above the dimensionless quantities have been omitted. 

This system of equations was studied by Gon'o in connection with the theory of the 
hyperbolic heat-conduction equation, and its results are outlined in detail in [7]. Accor- 
ding to this, it is found that 
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TABLE i. Numerical Values of Frictional Stress at Wall 

0 
0,2 
0,4 
0,8 
1,0 
1,4 
1,8 

1 

Vht 

CO 

1,2616 
0,8921 
0,6308 
0,5642 
0,4768 
O,42O5 

,o(+,) 

1 
0,9071 
0,8269 
0,6974 
0,6450 " 
0,5593 
0,4932 

2,0 
3,0 
4,0 
5,0 
6,0 
7,0 
8,0 

r 

0,3989 
0,3257 
0,2821 
0,2523 
0,2303 
0,2132 
0,1995 

t 

2 ,o(§ 

0,4657 
0,3674 
0,3085 
0,2700 
0,2430 
0,2228 
0,2070 

o(t, y) = 
O, O < t < y .  

e 2 lo , l > y ,  (42) 

Consider the value of the stress o at the wall: 

a( t ,  O ) = a o ( t ) = e  2 l o ( ?  t . (43) 

At sufficiently large t, using.the asymptotic expansion for the Bessel function Io, it 
may be shown that Oo(t) = I/# ~t. The theory of the Navier--Stokes equation leads exactly 
to this result [8], which is paradoxical when t§ since Oo(t) § From Eq. (43), Oo(0) =I. 
Hence, the dimensional stress ~ at the initial instant is 

pUo V-~ 
G ~ G m ~ F ~  

It is simple to see that this "resting stress" must be overcome by the wall if the given 
mode of flow is to arise. 

The idea here outlined leads to the assertion that the flow is initially turbulent but, 
at some point in time, it becomes laminar if the initial and boundary conditions are retained 
in the form in Eq. (39). The moment of transition is determined by the relaxational proper- 
ties of the medium. 

Table 1 gives numerical values of the frictional stress at the wall oo(t). It follows 
from an analysis of these data that discrepancy between Eq. (43) and the results of the 
theory of the Navier--Stokes equations is observed at a sufficiently large interval of dimen- 
sionless time t. 

NOTATION 

ui, component of hydrodynamic velocity i ~i, mean component of velocity; ui' , pulsational 
component of velocity; Pki, stress tensor; Pki, mean stress tensor; Pki', pulsational stress 
tensor; p, density; T, temperature; qk, heat-flux component; Io, Bessel function of zeroth 
argument. 
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